So, hello to all viewers and welcome back to Gettobyte Platform. In This blog you are going to know about RFID Reader MFRC522, which is designed by NXP Semiconductors. Objective would be to interface this module with Host MCU’s like of NXP Semiconductors, STMicroelectronics or other vendors MCU’s. Will make the driver to interface the RFID Reader with any MCU, not unlike just with Arduino and Arduino IDE environment. To make the driver of RFID reader at first, we need to dig into its datasheet, to understand its various sub parts. And that’s all about this blog is gotten going to be, to make the datasheet understand in easy way-out.
Table of Contents
Next & Previous Blog
RFID Technology
RFID modules is a wireless sensing technology which is used to track/identify/monitor the objects.
MFRC522 RFID Reader/PCD
MFRC522 is a highly integrated reader/writer IC for contactless communication at 13.56 MHz. These reader supports the ISO 14443 A protocol for communicating with RFID Tags. They are used to detect the MIFRAME RFID tags.
MFRC522 has internal RF transceiver, which provides a robust and efficient implementation for demodulating and decoding signals from MIFRAME compatible cards using ISO 14443 A protocol. The digital module of MFRC522 manages the complete ISO/IEC 14443 A framing and error detection (parity and CRC) functionality.
MFRC522 supports 3 tags of MIFRAME family, that are MF1xxS20, MF1xxS70 and MF1S50 products.
MFRC522 features
MFRC522 though quite old RFID reader and in today’s time many new advance RFID readers have come up. But so as to get started with this technology as a hobbyist/student/DIY project, it is perfect module to lay your hands on this Technology.
- MFRC522 has highly integrated analog circuitry to demodulate and decode responses when RFID tags are brought in close proximity of these devices.
- RFID readers are connected with some host MCU, where the processing of data which is received via RFID tags happens according to the application. MFRC522 can connect with host MCU, using SPI, Serial UART and I2C -bus interface.
- It supports ISO 14443 A protocol and can be used with MIFRAME family of RFID tags. And in MIFRAME family it supports only MF1xxS20, MF1xxS70 and MF1xxS50 products.
- It has internal CRC-coprocessor.
- Internal FIFO buffer which can handle 64 bytes of sending and receiving.
- It uses the Crypto-1 cipher for authenticating.
- It supports Internal oscillator for connection to 27.12 MHz quartz crytsal.
- It is low power device, need 2.5 V to 3.3 V power supply.
- It also has flexible interrupt modes when some RFID tags are detected and trigering events too. In addition to flexible interrupt, it has programmabe I/O pins and timer.
- It can perform Internal self-test too.
MFRC522 Functional description
MFRC522 Host Interfaces
MFRC522 can be connected to Host MCU using 3 serial protocols: UART, I2C or SPI.
MFRC522 checks the current host interface type.
automatically after performing a power-on or hard reset. The MFRC522 IC identifies the host
interface by sensing the logic levels on the below pins after the reset phase. 
The MFRC522 is equipped with a series of registers that allow the Host MCU to access its functional description blocks. To ensure the proper functioning of the MFRC522, the Host MCU must initialize and configure these functional blocks by sending the corresponding register addresses.
Each register is essentially an address byte that is transmitted from the Host MCU. Depending on the function described in the register section, read/write operations are performed on the corresponding address byte.
It is crucial to properly initialize and configure these functional blocks to ensure the optimal performance of the MFRC522. By understanding the purpose of each register and its corresponding function, the Host MCU can effectively communicate with the MFRC522 and achieve the desired results.
–> MFRC522_write_register()
–> MFRC522_Read_register()
MFRC522 Interrupts
MFRC522 can trigger the interrupts, when certain events occur. There are 8 events as shown in below table when interrupt can be triggered.
When above event occurs, IRQ pin is used to interrupt the host. IRQ pin signal is asserted and host MCU can use its interrupt handling capabilities (basically NVIC if we are talking about ARM based MCU) on what to do when corresponding interrupt has occurred.
- Status1Reg Register IRq bit is used to indicate if any interrupt source has been triggerered.
- Which interrupt has been triggered is indicated by ComIrqReg and DivIrqReg Register. 
- Which interrupts to be configured and behavior of IRQ pin is configured by ComIEReg and DivIEReg Register.
MFRC522 Time Unit
There is a Timer unit in MFRC522, that is used for multiple purposes. Timer unit is essential for maintaing the configuring the clock and analog interfaces. Also timer unit can be used for following features:
- Timeout counter
- Watchdog counter
- Stopwatch
- Programmable one shot
- Periodical trigger
Timer has an input clock of 13.56 MHz derived from the 27.12 MHz quartz crystal oscillator. The timer consists of 2 stages: prescaler and counter.
- The prescaler(TPrescaler) is a 12-bit counter. That can be configured using TModeReg register’s TPrescaler_Hi[3:0] and TPrescalerReg register’s TPrescaler[7:0] bits.
- The Reload value for the counter is defined by 16 bits between 0 & 65535 in the TReloadReg register.
- The current value of the timer is indicated in the TCounterVAlReg Register.
MFRC522 FIFO
FIFO overview
The MFRC522 contains an internal FIFO buffer of 64 bytes, which is equivalent to 8 x 64 bits. This buffer is utilized for both input and output data streams. The host MCU has the capability to perform both Read and Write operations on this FIFO. The host MCU sends commands to PCD for communication with PICC. these commands are specified in ISO14443 A standard, which is then inputted into the FIFO. When the PICC responds to these commands, the response is also stored in the FIFO. The host MCU can then read the FIFO to obtain the response from the PICC.
The FIFO buffer is a crucial component in the communication process between the host MCU and the PICC. It allows for efficient data transfer and ensures that all responses are stored in a centralized location. The ability to perform both Read and Write operations on the FIFO provides flexibility and control to the host MCU. By utilizing the FIFO buffer, the communication process is streamlined and optimized for maximum efficiency.
About FIFO registers
FIFO buffer input and output data bus is connected to the FIFODataReg register. Writing to this register stores one byte in the FIFO buffer and increments the internal FIFO buffer write pointer. Reading from this register shows the FIFO buffer contents stored in FIFO read pointer and decrements the FIFO buffer read pointer.
Only one FIFO buffer has been implemented which can be used for input and output. The microcontroller must
ensure that there is not any unintentional FIFO buffer accesses.
The FIFOLevelReg is utilized to determine the number of bytes stored in the FIFO. This register is particularly useful in checking the number of bytes received in the FIFO buffer when the PICC sends a response to the PCD command. By using the FIFOLevelReg, you can easily keep track of the amount of data stored in the FIFO, which is essential in ensuring the smooth operation of your system.
One can also get the status of FIFO buffer using status and error registers.
- FIFO buffer almost full warning can be got to know from Status1Reg register’s HiAlert bit.
- FIFO buffer almost empty warning can be got to know from Status1Reg register’s LoAlert bit.
- FIFO buffer overflow warning, using ErrorReg register’s BufferOvfl bit.
MFRC522 CRC
MFRC522 has a Cyclic Rebudency Check (CRC) coprocessor to check the integrity of the data when data from PICC is received or when data is wriiten to PICC.
- CRC has preset value 0000h, 6363h, A671h or FFFFh. We can configure the preset values using ModeReg CRCPreset[1:0].
- CRC polynomial for the 16-bit CRC is fixed to x^16 + x^12 + x^5 + 1.
- CRCResultReg register indicates the result of the CRC calculation.
- CRC algorithm which is used is according to ISO/IEC 14443 A and ITU-T.
To perform the CRC calculation refer its state machine in below section.
MFRC522 Command Set
MFRC522 operation is determined by certain commands. According to these commands, correspondingly MFRC522 would be performing some action.
So, it’s like at first, we will configure the FIFO, CRC, Interrupts and timer unit. After that Host MCU will instruct the commands to MFRC522 in order to tell what it has to do. Host MCU will write the command code to the CommandReg Register.
Main commands that would be used are Idle, Transceive, CalcCRC and Transmit commands. Transceive command is the one which has to be sent from Host MCU to MFRC522 to send the FIFO buffer data to the antenna, which is further propagated to the RFID readers. And according to the data which we have written in FIFO RFID readers would act and give response.
Each command that needs a data bit stream (or data byte stream) as an input immediately processes any data in the FIFO buffer. An exception to this rule is the
Transceive command. Using this command, transmission is started with the BitFramingReg register’s StartSend bit.
MFRC522 Block Diagram
Above is the simplified block diagram of MFRC522 module. MFRC522 has an internal memory, power supply, interrupt pins, FIFO buffer, Antenna and analog interface, digital module for communicating with Host MCU.
Analog Interface handles the modulation and demodulation of the analog signals. FIFO Buffer ensures fast and convenient data transfer.
Register bank are the set of registers through which MFRC522 would be configured and initialized to use. Parameters like Clock, Interrupts, status of errors while communicating with RFID readers, CRC calculation, FIFO configuration and etc need to be configured before using the MFRC522.
How the MFRC522 Internal system works?
Host MCU will send PCD Commands to MFRC522, according to which it will perform some operations. MCU will send these commands by writing into one of the registers of PCD.( For MFRC522 CommandReg is register)
Operations like:
- Activation of CRC Coprocessor
- Transmission of data from FIFO buffer of MFRC522 and activation of receiver circuits to get the response from PICC
- transfer of data from FIFO to an internal buffer
- soft reset and authentication-based operations
Further MFRC522 will emit the commands for communicating with PICC, here referred to as PICC Commands, according to which operation with PICC takes place, like scanning of PICC, selecting the PICC, reading and writing the data on PICC. MFRC522 emits these commands via electromagnetic induction and electric coupling. ( That is the main working principle behind the RFID technology)
Host MCU to PCD
Host MCU will send the commands to PCD, according to which PCD will perform the operations like activation of FIFO buffer or CRC coprocessor, and transmission of data from FIFO. We will name these commands as MFRC522 Commands sets. Host MCU will send those commands to PCD (here MFRC522) by writing into the CommandReg Register using low level Host Interface write API.
- Idle Command: Places the MFRC522 in Idle mode.
- Mem Command: Transfers the 25 bytes from the FIFO Buffer to the internal buffer. This command is used when, we want to read the data from PICC( As described in ISO-14443-4 doc), as PICC response is always recorded in PCD FIFO.
- Generate RandomID: generates a 10-byte random ID number.
- CalcCRC: Activates the CRC coprocessor or performs a self test.
- Transmit: transmit data from the FIFO buffer
- NoCmdChange: no command change, can be used to modify the CommandRef register bits without affecting the command
- Receive: activates the receiver circuits
- Transceive: Transmit data from the FIFO buffer to antenna and automatically activates the receiver after transmission.
- MFAuthent: performs the MIFARE standard authentication as a reader
- SoftReset: This command performs a reset of the device. The configuration data of the internal buffer remains unchanged. All registers are set to the reset values. This command automatically terminates when finished.
PCD to PICC
Further there are also command set which PCD have to emit to communicate with PICC and enter the PICC into some state machine.
PICC States:
- Power-off State: In the POWER-OFF state, the PICC is not powered by a PCD operating field
- Idle State: In the IDLE state, the PICC is powered. It listens for commands and shall recognize REQA and WUPA commands.
- Ready State: Cascade levels are handled inside this state to get the complete UID. PICC enters the ACTIVE state when it is selected with its complete UID.
- Active State: PICC complies with ISO-14443-4 to accept protocol activation commands (RATS)
- HALT State: In this state PICC only responds to WUPA command.
- Protocol State: PICC behaves according to 1s014443-4 specifications.
We will name these commands as PICC commands. Host MCU will write these PICC command into the PCD FIFO (refer the MFRC522 FIFO section on how to write the data on FIFO). PCD would transmit the FIFO data when it enters the Transceiver state machine (refer above topic).
PCD would transmit these commands via the electromagnetic induction and communicates with PICC via electronic coupling. PCD’s have RF transceivers through which it emits the electromagnetic waves with commands sets encoded in them. PICC have antenna and small circuitry, which gets energized via electromagnetic waves emitted by PCD and then further both PCD and PICC get coupled together to have 2 way wireless communication. How PCD would send commands to PICC and in return how PICC would respond, that is done according to IS014443 protocol. ISO14443 specifies all the frame formats,PICC command and their format , modulation schemes for RFID technology. 
PICC Frame formats:
- Short Frame:
- Standard Frames
PICC Command Set:
- REQA/WUPA Command: This command is send by PCD to scan the valid and IS014443 compatible PICC’s. This command is in short frame format. Host MCU will write this command into the PCD FIFO, from where this command is transmitted and emitted wirelessly. Response to this command is with ATQA. PICC are in Idle state when listening to this command and after successfully transmitting the ATQA response they enter into Ready State. These commands consist of 7 bits, as specified below:
- ANTICOLLISION/SELECT Command: PICC are in ready state when listening to this command and after this command they enter into ACTIVE STATE. This Command is used to get the UID of the scanned PICC and further select the corresponding PICC for Reading and writing data from it. For the MF1S503 PICC’s UID is of 4 bytes, for that only 1 cascade level is needed.
These commands need to be configured and then these bytes are written into The PCD FIFO for transmission and emission of signal to PICC wirelessly. This Command consists of:
- Select code SEL(1byte): Specify the cascade level.
- No of valid bits NVB (1 byte): specify number of bytes that would be transmitted by PCD to PICC (including SEL, NVB and below point)
- 0 to 40 data bits of UID according to value of NVB.
ANTICOLLISION Command consist of:
- Select Code: Cascade level 1= 0x93
- No of valid bits NVB = 0x20
Response to ANTICOLLISION Command is with the UID of the Scanned PICC(0xEA, 0x24, 0x77, 0x15) and its CRC(0xAC).
- SELECT Command consists of:
- Select code: Cascade level 1 = 0x93
- No of valid bits NVB – 0x70
- 0 to 40 data bits of UID that has been received in ANTICOLLISION Command( 0xEA, 0x24, 0x77, 0x15)
- CRCA(1 byte) : CRC of SELECT Command would be calculated by PCD and then it would be sent to PICC. And When PICC receives the SELECT Command it will check this CRCA and then will send the ACK.(0xAC)
Response to SELECT Command is with the Select Acknowledge:
MFRC522 Hardware and Pinout
MFRC522 IC has 32 pins in total and it comes in SOT617-1 package.
Pin description can be found from the datasheet of MFRC522. To use the MFRC522 IC its module is widely available and quite inexpensive. Can be brought from Robu at cost of 150 rupees. With the module an RFID tag and a key fob tag of MIFRAME Classic 1KB comes in.
In MFRC522 module, IC has 8 pins exposed out for connection and connecting to host MCU.
- The module has 4 pins exposed out for connecting it to host MCU using either SPI, I2C or UART. By default, reader can communicate with a microcontroller over a 4-pin SPI with a maximum data rate of 10 Mbps. It also supports I2C and UART protocols. As told in MFRC522 functional description part, MFRC522 checks the host interface type automatically depending on the signals on it’s control pins.
- MFRC522 module has 1 interrupt pin also exposed out, which can be used to trigger interrupts to alert the microcontroller when a RFID tag is in the vicinity.
- And remaining 3 pins are power supply pins and a reset pin. Reset pin is used for power down mode and reset signal. Module requires the power supply of 3.3 V, that is provided via VCC and GND pins.
Other vendor RFID readers
STMicroelectronics
Texas Instruments
Infenion technologies
Sensor & Modules to explore
Technologies to Explore
Other Blog to Explore
Read and Write to a Rfid Tag
In the previous blogs we discussed how to read uid of different tags . Now as discussed in the applications of the rfid cards , the rfid tags can be used to store employee information so as to access certain restricted area. The rfid tags can also be used by retail stores to store customer information and points earned with each shopping. In this blog we’ll be learning how data reading or writing works by looking at the memory map of MIFARE 1K Tag and how to read and write the data using rc522. UNDERSTANDING THE MEMORY MAP OF MIFARE 1K TAG The memory of the MIFARE 1K Tag is divided into 15 sectors and each sector is divided into 4 blocks , within each block 16 bytes of data is stored Hence 16 Sectors * 4 Blocks * 16 Bytes=1024 Bytes = 1K The 0th Block of Sector 0 is used to store manufacturer data , this is usually 4 Byte UID(MIFARE 1K TAG, MIFARE Mini Tag) certain tags are available such as MIFARE Plus , MIFARE Desfire etc that has 7 Byte UID There are 3 data blocks presents in each sector and the last block in each sector is known as sector trailer.The 3 data blocks are used to store user data and the trailer block is used to deter mine the access conditions for all the blocks of the sector . The access conditions include Read , Write , Increment , Decrement ,Transfer and Restore. Each sector trailer consists of following information:- A mandatory 6 Byte Key A. 4 Bytes for Access Bits. Optional 6 Byte Key B (if not used, data can be stored). MEMORY ORGANIZATION MANUFACTURER BLOCK SECTOR TRAILER ACCESS CONDITIONS MEMORY ORGANIZATION MANUFACTURER BLOCK SECTOR TRAILER ACCESS CONDITIONS FUNCTIONAL DESCRIPTION uint8_t MFRC522_Write(uint8_t blockAddr, uint8_t *writeData) This function takes in 2 arguments the address to which the data has to be written and the array or buffer in which data is stored lets say this to be writedata array. A 8 bit array of 18 length is also intialized to store data which will be transferred to the memory block. Intially CRC is checked using CalculateCRC function using which takes in 3 arguments array in ( whose first 2 values are PICC Write and blockAddress ), len and output array that stores 2 values CRCResultRegL , CRCResultRegM . Next MFRC522_ToCard function is called which takes in 5 arguments command (in this case that will be PCD_Transceive), send data , send length , back length, back data according to various commands processing is done and according to switch cases status is sent Finally MFRC522_ToCard in again called (with PCD_Transceive) and the data is transferred to the FIFODataReg to return with the correct status and finally the PCD is set to idle uint8_t MFRC522_Read(uint8_t blockAddr, uint8_t *recvData) This function is used to read data from a memory block and and put it into a buffer or array hence the argument recvData Similar to uint8_t MFRC522_Write initially the CRC is calculated and MFRC522_ToCard is called. In MFRC522_ToCard the command argument is set to PCD_TRANSCEIVE due to which the code enter the for loop in which the data that was in FIFODataReg is populated in the recvData Buffer. Finally MFRC522_ToCard in again called (with PCD_Transceive) and the data is transferred to the FIFODataReg to return with the correct status and finally the PCD is set to idle uint8_t MFRC522_ToCard(uint8_t command, uint8_t *sendData, uint8_t sendLen, uint8_t *backData, uint *backLen) This function is used to control the MFRC522 according to the command arguments that can be PCD_AUTHENT PCD_TRANSCEIVE Both these commands have different irqEn ,waitIRq that are written into CommIEnReg block which is then cleared using clear bit mask function After finally setting bit mask the PCD is set to idle state The function writes the data in FIFODataReg to the backData buffer and returns the status which is OK in case of no errors STM32CUBE IDE CONFIGURATION FIG 1- PINOUT CONFIGURATION FIG 2 – CONFIGURING THE SPI1 PERIPHERAL CODE #include “main.h” /* Private includes ———————————————————-*/ /* USER CODE BEGIN Includes */ #include “stdio.h” #include “stm32f1_rc522.h” #include “stdio.h” #include “string.h” #include “fonts.h” #include “ssd1306.h” /* USER CODE END Includes */ /* Private typedef ———————————————————–*/ /* USER CODE BEGIN PTD */ /* USER CODE END PTD */ /* Private define ————————————————————*/ /* USER CODE BEGIN PD */ /* USER CODE END PD */ /* Private macro ————————————————————-*/ /* USER CODE BEGIN PM */ /* USER CODE END PM */ /* Private variables ———————————————————*/ I2C_HandleTypeDef hi2c1; SPI_HandleTypeDef hspi1; UART_HandleTypeDef huart1; /* USER CODE BEGIN PV */ void uprintf(char *str) { HAL_UART_Transmit(&huart1,(uint8_t *)str,strlen(str),100); } //uint8_t i; uint8_t status; uint8_t str[5]; // Max_LEN = 16 uint8_t serNum[5]; uint8_t KEY[] = {0xFF,0xFF,0xFF,0xFF,0xFF,0xFF}; uint8_t KEY2[]={1,2,3,4,5,6}; uint8_t W[]=”PRATYUSH”;/STEP 1/ uint8_t R[10]=””;/STEP 2/ uint8_t test; /* USER CODE END PV */ /* Private function prototypes ———————————————–*/ void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_SPI1_Init(void); static void MX_USART1_UART_Init(void); static void MX_I2C1_Init(void); /* USER CODE BEGIN PFP */ /* USER CODE END PFP */ /* Private user code ———————————————————*/ /* USER CODE BEGIN 0 */ /* USER CODE END 0 */ /** * @brief The application entry point. * @retval int */ int main(void) { /* USER CODE BEGIN 1 */ /* USER CODE END 1 */ /* MCU Configuration——————————————————–*/ /* Reset of all peripherals, Initializes the Flash interface and the Systick. */ HAL_Init(); /* USER CODE BEGIN Init */ /* USER CODE END Init */ /* Configure the system clock */ SystemClock_Config(); /* USER CODE BEGIN SysInit */ /* USER CODE END SysInit */ /* Initialize all configured peripherals */ MX_GPIO_Init(); MX_SPI1_Init(); MX_USART1_UART_Init(); MX_I2C1_Init(); /* USER CODE BEGIN 2 */ MFRC522_Init(); /* USER CODE END 2 */ /* Infinite loop */ /* USER CODE BEGIN WHILE */ while (1) { status = MFRC522_Request(PICC_REQIDL, str); //MFRC522_Request(0x26, str) status = MFRC522_Anticoll(str); memcpy(serNum, str, 5); HAL_Delay(1000); MFRC522_SelectTag(str); test = MFRC522_Auth(PICC_AUTHENT1A,24,KEY,serNum);/STEP 3/ MFRC522_Write((uint8_t)24 , W);/STEP 4/ HAL_Delay(1000); MFRC522_Read(24, R);/STEP 5/ HAL_Delay(1000); if (status == MI_OK) { MFRC522_SelectTag(str); test = MFRC522_Auth(PICC_AUTHENT1A,2,KEY,serNum); /*if((str[0]==0) &&
GPIO Control over S32K144(MCAL Driver)
Interfacing LEDS and Switches via Port Driver of Autosar MCAL Layer using ElecronicsV3 Board(S32K144 MCU)
SSD1306 OLED Display Screen
Display Technolgy mainly consists of two things: Display Devices and Display Driver Integrated Chips(DDIC). Display Devices: are OLED, LCD, LED, CRT, Vacuum Florescent, etc modules. To know in-depth about the different types of display devices refer to this. Display Driver Integrated Chips(DDIC): are semiconductor IC\’s that provide an interface between the control Unit(MPU and MCU) and a particular type of display device. Display driver accepts commands and data using onboard communication protocols like I2C, SPI, CMOS, RS232, etc and generates signals with suitable voltage, current, timing, and demultiplexing to make the display show the desired text or image. Display driver IC\’s may also incorporate RAM, Flash Memory, EEPROM, and/or ROM. Examples of Display Driver IC are SSD1306, HD44780, KS0108, SSD1815, and ST7920. In this blog, we are going to use the OLED Display device and will go in-depth into one of the OLED Display Driver IC\’s: SSD1306 by Solomon Systech. OLED Display Introduction OLED(Organic Light Emitting Diode) displays are the new technology in the display screen industry that are revolutionizing the user interface for users in various devices like TV screens, Virtual Reality headsets, Smart Watches, and many more. LCD Technology is compentator to OLED technology. LCD is a non-emission and older display technology that requires an external light source to work. While OLED technology is modern and considered to be emission display technology, that does not require a backlight that is an external light source. OLED Display technology is pretty exciting and opens lots of possibilities: Curved OLED Display Wearable OLED\’s Flexible and rollable OLED Transparent OLED embedded in Windows and many more we can not imagine today. The focus of this blog will be more on the understanding of OLED Display Driver IC: SSD1306 and its driver development for operating the below OLED Screen Module. To get to know about the OLED display working and its layers, readers can refer to this blog. OLED Driver IC\’s apart from SSD1306 are SSD0323. SSD1306 OLED Driver IC SSd1306 is an integrated chip that is used to drive the OLED display of the dot-matrix graphic display system. These IC\’s comes in Chip on glass or Chip on Film packaging i.e chip die is directly mounted to a piece of the glass display. SSD1306 has a feature to drive up to 128 columns & 64 rows of OLED pixels. It has constant control, display RAM and oscillator inbuilt which reduces the external components and power consumption. SSD1306 IC itself require only 1.65 to 3.3 V that can be provided to it easily from MCU. But as OLED displays does not have backlight as LCD has, so the panel of OLED requires higher voltages of about 7-15 V which is supplied to OLED panel from internal voltage doublers and charge pump circuitry\’s. And on an average OLED display consumes only 20mA current. Now coming to the part that how does these Driver IC display data on these OLED screens. Author: Kunal Gupta
How to do CAN Communication using Automotive Microcontroller S32K144 via ElecronicsV3(Non-Autosar Driver)
Dwell into this blog to know how to do CAN communication with automotive microcontroller. Start your journey to learn CAN communication protocol with simple DIY project using ElecronicsV3 board and CAN analyzer tool
What is Autosar Technology?
All About Classic Autosar Technology at one place. From Its architecture layer to methodology to Companies and tools involved. All at one place
Author: Kunal Gupta
Author