SSD1306 OLED Display Screen

Display Technolgy mainly consists of two things: Display Devices and Display Driver Integrated Chips(DDIC). Display Devices: are OLED, LCD, LED, CRT, Vacuum Florescent, etc modules. To know in-depth about the different types of display devices refer to this. Display Driver Integrated Chips(DDIC): are semiconductor IC\’s that provide an interface between the control Unit(MPU and MCU) and a particular type of display device. Display driver accepts commands and data using onboard communication protocols like I2C, SPI, CMOS, RS232, etc and generates signals with suitable voltage, current, timing, and demultiplexing to make the display show the desired text or image. Display driver IC\’s may also incorporate RAM, Flash Memory, EEPROM, and/or ROM. Examples of Display Driver IC are SSD1306, HD44780, KS0108, SSD1815, and ST7920. In this blog, we are going to use the OLED Display device and will go in-depth into one of the OLED Display Driver IC\’s: SSD1306 by Solomon Systech. OLED Display Introduction OLED(Organic Light Emitting Diode) displays are the new technology in the display screen industry that are revolutionizing the user interface for users in various devices like TV screens, Virtual Reality headsets, Smart Watches, and many more. LCD Technology is compentator to OLED technology. LCD is a non-emission and older display technology that requires an external light source to work. While OLED technology is modern and considered to be emission display technology, that does not require a backlight that is an external light source. OLED Display technology is pretty exciting and opens lots of possibilities: Curved OLED Display Wearable OLED\’s Flexible and rollable OLED Transparent OLED embedded in Windows and many more we can not imagine today. The focus of this blog will be more on the understanding of OLED Display Driver IC: SSD1306 and its driver development for operating the below OLED Screen Module. To get to know about the OLED display working and its layers, readers can refer to this blog. OLED Driver IC\’s apart from SSD1306 are SSD0323. SSD1306 OLED Driver IC SSd1306 is an integrated chip that is used to drive the OLED display of the dot-matrix graphic display system. These IC\’s comes in Chip on glass or Chip on Film packaging i.e chip die is directly mounted to a piece of the glass display. SSD1306 has a feature to drive up to 128 columns & 64 rows of OLED pixels. It has constant control, display RAM and oscillator inbuilt which reduces the external components and power consumption. SSD1306 IC itself require only 1.65 to 3.3 V that can be provided to it easily from MCU. But as OLED displays does not have backlight as LCD has, so the panel of OLED requires higher voltages of about 7-15 V which is supplied to OLED panel from internal voltage doublers and charge pump circuitry\’s. And on an average OLED display consumes only 20mA current. Now coming to the part that how does these Driver IC display data on these OLED screens.

Bluetooth Low Energy (BLE)

Motivation is necessary to reach to our goals but discipline is needed to make them achievable. What is Bluetooth Low Energy? This series of blogs on BLE, is for anyone who is going to start with Bluetooth Low Energy. Bluetooth energy comes under the short range wireless communication protocols of IoT. So lets start by understanding what is BLE. Bluetooth is a wireless communication protocol that is started as a cable replacement technology to replace wires in devices like mouse, keyboards and etc. It operates at 2.4Ghz in unlicensed ISM frequency brand. Their are two types of Bluetooth devices: one is Bluetooth Classic(BR/EDR) and Bluetooth Low Energy. Bluetooth versions from Version 1.0 to 3.0 are referred as Bluetooth Classic and from 4.0 to latest version 5.2 are referred as Bluetooth Low Energy(BLE). Bluetooth protocol is backwards compatible. Bluetooth Classic technology is developed as a wireless standard allowing cables to be replaced connecting portable and fixed electronic devices, but it cannot achieve extreme level of battery life because of its fast hopping, connection oriented behaviours and relatively complex connection. Bluetooth Classic further has Basic Rate mode(V1), Enhanced Data Rate mode(V2) and High Speed mode(v3). In this article we will not dwell much into the Bluetooth Classic, our discussion area will be confined to Bluetooth low Energy. BLE stands for Bluetooth Low Energy, which has been created for the purpose of transmitting very small packets of data at a time, while consuming significantly less power then Bluetooth Classic. Now for working with any wireless communication protocol, their are 2 important concepts that have to be understood for it. Its Communication Protocol Architecture and Communication protocol Stack( it is the firmware implementation of the Architecture). So for proceeding with BLE, we will first understand Its architecture, about the terms like GATT,GAP, HCI and how does Bluetooth low energy works and then further will understand its stack on Nordiac devices. Click here Read more such articles:

DESIGNING STEPS OF PCB

Hello Friends, This is the second blog of the series of PCB designing. Today we are discussing Steps for PCB Designing, Types of Component and methods for mounting components onto a PCB and designing steps. So before discussing the Method for Mounting Components on PCB, first we will discuss the process or different stages of PCB designing. In order to design a PCB, one has to follow below steps : 1. Create the schematic 2. Link footprints to the components in the schematic 3. Generate a netlist 4. Create desired PCB shape in PCB editor 5. Import the netlist in PCB editor 6. Define design rules 7. Place the footprint of the component at desired location 8. Route the tracks to form electrical connections       between various components 9. Add labels and identifiers on PCB 10. Generate design file Types of Components and Its Symbol :- So these are some symbols that are used to prepare the schematic. Methods for mounting components onto a PCB. 1. Through Hole: Through-hole components are best used for high-reliability products that require stronger connections between layers. Through-hole component leads run through the board, allowing the components to withstand more environmental stress. This is why through-hole technology is commonly used in military, automobile, and aerospace products that may experience extreme accelerations, collisions, or high temperatures. Through-hole technology is also useful in test and prototyping applications that sometimes require manual adjustment and replacement. 2. SMD (surface-mount devices): SMD components are much smaller than THM components. This will increase the overall density of the board tremendously. Using a Pick and Place machine for placing the components will reduce production time.SMD components are mostly cheaper compared to THM components. surface-mount devices (SMDs) are secured only by solder on the surface of the board SMD components are not suitable for prototyping or testing of small circuits. SMDs cannot be used directly with breadboards SMD solder connections may be damaged by potting compounds going through thermal cycling. EasyEDA Online Tool We will start from EasyEDA, a great web-based EDA(Electronics Design Automation) tool for electronics engineers, educators, students, makers, and enthusiasts. There is no need to install any software. Just open EasyEDA in Browser. EasyEDA Provides: Simple, Easy, Friendly, and Powerful drawing capabilities Works Anywhere, Anytime, on Any Device Real-time Team Cooperation Sharing Online Thousands of open-source projects Integrated PCB fabrication and Components purchase workflow API provided Script support Schematic Capture PCB Layout: Design Rules Checking(DRC) Multi-Layer, 6 copper layer supported Document export(PDF, PNG, SVG) Altium Designer format export BOM export 3D View Generate fabrication file(Gerber) Export Pick and Place file Auto Router Designing Steps Open EasyEDA Tool On Browser Register in EasyEDA Create New Project Draw Schematic Convert that file into BoARD FILE Track the air wire Select needed layers Print the Document Summary In this second blog, we introduced designing steps. Then we discussed the method of mounting components. Introduced the Easyeda Online tool. Reference : https://payatu.com/blog/rupesh/PCB%20Designing%20-%20Basics https://blog.thedigisource.com/through-hole-smt https://www.vishay.com/docs/45242/throughholevssmdcomponents.pdf https://eprpartner.com/through-hole-vs-surface-mounted https://docs.easyeda.com/en/Introduction/Introduction-to-EasyEDA/index.html https://circuitdigest.com/article/design-electronic-circuits-online-with-easyeda

Introduction of Nordiac NRF5xx SoC\’s

Table of Contents Overview on Nordic IoT Chips Nordic Semiconductor is a semiconductor MNC, which designs & develops a wide range of SoCs supporting IoT protocols. These SoC’s have all functionalities of Microcontroller(MCU) based on ARM cortex Processors, plus they embed 2.4ghz RF transceivers into the chips using RF-CMOS technology for making IoT chips. NRF52 and NRF51 series of SoC’s are widely accepted across the industries where there is a need for Low Power/Ultra Low Power consumption IoT solutions. Nordic Semiconductor NRF5xxx SoC is ideal for Ultralow power and cost-effective short-range wireless solutions. Typical applications for NRF5xxx SoC are: IoT(Internet of Things) devices Wearables Smart Home Wireless Mobile Phone Accessories PC Peripherals Beacons Bluetooth-enabled consumers NRF51 & NRF52 Series have all hardware support of MCU peripherals like ADC, SPI, I2C, UART, GPIO, TIMERS, etc, and 2.4ghz RF transceivers for hardware support of IoT protocols into the chip. Thus NRF5xxx series of SoC can be used for Embedded devices applications(Using MCU peripherals like UART, SPI, I2C, TIMERS, ADC, RTC, USB, etc.)and IoT applications( using protocols like BLE, ZigBee,  Thread, ANT, etc.) simultaneously. NRF5x Series supports the following short-range IoT protocols: BLE THREAD ZigBee ANT Near Field Communication  NRF Proprietary IoT protocols: ESBP & Gazell. Nordic Semiconductor also provides a full suite of IoT stacks to support of above IoT protocols. Nordic Semiconductor has named them Softdevices. To get to know about IoT protocols supported by Nordic chips you can refer to this. Nordic Semiconductor provides a wide range of development hardware from development kits to USB dongles for fast prototyping and hobbyists to play with NRF5x IoT Soc.  How to get started??  We will be using Nordic NRF52840 – DK, which is the official development board for the NRF52840 SoC. Now when I first got the NF52840 DK, it is very different from Arduino, STM, ESP boards. It has lots and lots of chips on it and quite fascinating to explore what all hardware is on it for what purposes. nRF52840-Development Kit At the same time, it is very confusing for me also on how to start with these IoT chips as they have so many features and functionalities on them. From MCU peripherals to IoT stacks, Crypto engines, Power management, analog features, and many more. nRF52 and nRF51 Chips So what I decided at first will start from exploring MCU peripherals, understanding peripheral driver header, and source files: HAL & LL. Subsequently will get to know about the Development environment and SDK of NRF chips. Starting from basics at first and then will move to IoT protocols, in that also we will first start from BLE and then to other IoT protocols. Those who don’t want to explore NRF52840 MCU peripherals can directly start from the BLE part of NRF5x chips. At first, we will make some application code using NRF5x MCU peripherals like GPIO, UART, SPI, I2C, TIMERS and etc. Will understand the HAL APIs provided by Nordic SDK for these peripherals. Will then interface different sensors and modules for making embedded devices. Then will understand the supported IoT protocols architecture and stacks. Now to get started with any MCU or SoC the first couple of things we have to understand are: Its Development Software: Software Development KIT(SDK), Integrated Development Environment (IDE), Debuggers, Environment setup for cross-compilation from our laptop/desktop to the designated MCU processor. Then we have to gather & understand the development board of the corresponding semiconductor chip. As development boards are the fastest and easiest way to get started with semiconductor chips. We will be using NRF52840- Development Board in this series and all the blogs and videos will be on it only.  Development Software for Nordic SoC’s Toolchain setup for Nordic SoC’s At first, we need an IDE. IDE provides a complete solution and one-stop environment for firmware development on microcontrollers. So Nordic Semiconductor provides 2 IDE for the development: Seger Embedded Studio and Arm® Keil µVision. The one which is recommended and preferred to use is Seger Embedded Studio (SES). So, in this tutorial series, we are going to use Seger Embedded Studio (SES). SES is a professional IDE that is highly recommended and used in the industry. SES is free to use for Nordic chips and its installation is pretty easy, can be downloaded from this link. Seger Embedded Studio Nordic chips are programmed and debugged using J-Links. Nordic NRF52840-DK has an onboard Jlink debugger and programmer. So we don’t have to care much about the hardware side of the debugger, but we have to install some software packs for using the Onboard J-Link debugger. We will install the Segger J-link Software and save it along with the same directory as that of SES. So that all that we have to set up for the toolchain of Nordic Chips, successfully installed the IDE and Debugger pack for Developing for Firmware on Nordic chips. At first, when we open the Segger Embedded Studio, it will open with a Hello world example as shown below. Segger Embedded Studio first time open page. How to get started with Seger Embedded Studio for NRF52840 nRF5 Series: Developing with SEGGER Embedded Studio (nordicsemi.com) Software Development Kit for Nordic SoC’s Once we have set up the toolchain, we will now explore and understand the SDK provided by Nordic. SDK includes the building blocks for developing applications. This includes the framework, peripheral libraries, Source & Header files of drivers, RF stacks, example codes for various applications, bootloaders and etc. Every MCU vendor provides the SDK, which is written in C/C++ languages to get started. One will write the source code in SES IDE using SDK provided by Nordic. Now as we navigate to the Nordic Semiconductor website under the Development Software Section, we will see there are a number of SDK packs which are listed: nRF 5 SDK nRF SDK for Mesh/Zigbee/Thread nRF Connect SDK nRF MDK Softdevices Overview of Nordiac SDK’s At first, it is very confusing for me & can’t figure out which SDK is for what

Allegro\’s AC Power monitoring IC ACS71020

In many applications, we want to monitor AC electrical parameters like Solar chargers, motor control, Battery Charging stations, or Smart energy meters. Measurement of AC current and voltage, by the means of the electronics, is a quite tricky part, unlike traditional electromechanical systems. Below is a basic block diagram to know about it. AC voltage and current signals are first steps down to low voltage and current values.One can not feed High AC electrical voltage and Current signals which can range from 0-1000 units and are even larger than that, in some applications(Power systems, AC motors and etc)  to the electronics and digital world.  So at first by the use of one of the below listed three methods AC signals are brought to low values( 0-10V, 0-5A) Use of Current Transformer,  Potential Transformer, or  Rogowski coil. Use of shunt resistors. Use of Hall effect-based principal for current measurement.  The signals which we get after processing from these methods are fed into the Digital System where there are signal conditioning circuits, data acquisition circuits, digital signal processing by the use of Digital and Analog Electronics. The Digital System part is designed to embedded into the Integrated chips(ASIC) which are specially designed with the purpose of Energy Metering application. For the digital computation of key electrical parameters like Power factor, Active power, reactive power, Vrms, Irms and etc. Using these key parameters we can monitor the AC electrical parameters through serial interfaces like SPI/I2C with Host MCU. ACS71020 Energy Metering IC Allegro microsystem\’ AC power monitor module ACS71020 is a Single-phase energy monitoring IC that works on the principle of the HALL effect sensing technique (To know about ways to measure current refer to this blog) to measure the AC current and resistor divider network to measure the input AC voltage. It calculates the key electrical parameters using its  Metrology Engine and digital system from which it sends the data to the host MCU via I2C and SPI interfaces. The Voltage and current reading that we get from AC voltage and Current measurement blocks via the sense amplifiers are analog in nature. The analog signals from respective Voltage and Current blocks are then fed into the internal ADC\’s(Analog to Digital converter). ADC samples the current and voltage channels at high frequency and then digitally converts them by filtering and decimating the output signal from sense amplifiers to avoid large anti-aliasing filters. The digital word from the ADC is 16 bits for both the current and voltage, which is fed to the digital system for further calculation of other electrical parameters. Its Key Features are: Without the need for any Transformer, Rogowski coils, oversized current transformers, or the power loss of shunt resistors one can calculate Vrms and Irms up to 517V and 90A respectively It has an advanced digital system with galvanically isolated current sensing technology which achieves reinforced isolation ratings in a small PCB footprint Apart from the calculation of Electrical Key parameters it also has many extra features too which are essential for monitoring purposes. ACS71020 IC Pinout Diagram and Pins description ACS71020 IC has 16 pins, Starting from Pin 1-8 are current channel pins, out of which pins 1-4(Fused internally) are all IP+ and pins 5-8(fused internally) are all IP-.  Pins 16-15 are Voltage measurement pins  ACS71020 IC Schematic For using ACS71020 for typical applications its schematic is pretty easy and less complicated in oppose to other metering IC\’s(STMP32 & ADE series). ACS71020 can be powered directly from the same supply as the system\’s MCU, through its reinforced isolation technology it does need multiple power supplies to power it up. So Vcc and GND pins are connected directly to MCU Vcc and GND pins. I2C  pins are at a high level(5V or 3v3), before the start of the I2C Serial Communication, thus SDA and SCL lines are connected with a pull-up resistor. When using in I2C mode, pins 9 & 10 act as DIO_1 and DIO_0( Digital Input/Output)  respectively, which are connected directly to MCU Digital Pins( Will get in detail about DIO pins in a later section) For SPI communication, MOSI, MISO, CE pin are at a high level and CLK is at GRND before the start of SPI serial Communication. When using in SPI mode, pins 9 &10 are used as MOSI and CS pins. ACS71020 IC  measures the Current and voltage of the input AC signal to calculate all other key parameters. So for inputting the AC voltage & current signals to the ACS71020 IC we will focus on Voltage channel pins(VINP & VINN) and Current channel pins(IP+ & IP-). One thing to recall is that in a single-phase AC supply there are two terminals: Live Wire (Black/Red) carries electricity from the power supply and takes it to the load. Neutral wire(Blue wire) returns the electricity from the load to the power supply to make the circuit complete. VINN &VINP are terminals from where AC voltage is measured, so resistor network divider of 1mega ohm and shunt resistor is made in b/w the VINP and VINN terminals to fit the input AC voltage within the Range of the differential voltage input buffer of ACS71020( +-275mv) as specified in electrical characteristics of the datasheet. IP+[1:4] & IP-[5-8] pins are terminals for AC current measurement. IP+ terminals are fused internally and are connected to a neutral wire of load and IP- terminals are also fused internally and are connected to a neutral wire of supply to complete the current loop of the current channel. EVE ACS71020 Module For doing the practical demonstration with ACS71020 IC we are going to use the EVE ACS71020 breakout board, which is manufactured by the Evelta. The module is cheap and can be used easily with HOST MCU via I2C or SPI communication. The module has pull-up resistors of 10k ohm placed with SDA and SCL pins( pins 12 & 11) of ACS71020  and no pull-up resistors are connected with MOSI and CS  pins(pins 10 & 9) means we can use these

HOW TO START WITH PCB DESIGNING?

Hello Friends, I’m Taral Mehta. I\’m an Electronics Engineer, This is the first blog of the series to discuss and learn the basics of PCB designing. In this blog, we will discuss, Introduction of PCB and its designing techniques. As well as we will discuss various software that are used for designing the PCB. Table of Contents Starting with Basics of ELectricity Before going to start with PCB designing, we will understand the basic components required: Current – Current is the rate of flow of electric charge. at all points in a series circuit, the current has the same value. If a circuit has a branch, the current flowing into the junction must equal the current flowing out of it.   Voltage – Voltage is also known as potential difference.In a circuit loop, the sum of the voltages across the power supplies is always equal to the sum of the voltages across the rest of the components. RESISTOR – Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms CAPACITOR – A capacitor is an electronic component that stores and releases electricity in a circuit. It also passes alternating current without passing direct current. Introduction to PCB (Printed Circuit Board) As an Engineer, whether is Mechanical Engineer, Computer Engineer, or IT Engineer, now and then everybody comes across one of the vital parts of the respective industry i.e. Electronic Circuit. This electronic circuit is made or created on a special type of board, which is called PCB (Printed Circuit Board). As you can see in the above image, PCB has electronic components which are connected through conductive pathways, which are usually called Tracks. A PCB is a thin board made of Fiberglass, composite epoxy or other laminate material. Tracks are etched or printed onto a board, which connects different components on PCB, such as Diode, Resistors, Capacitors and Integrated Circuits (IC). These blue and red lines going criss-cross are the Tracks, which form electrical connections between components. And these Yellow and grey objects are actually footprints or pads of components. I Know that tracks, via and Pads are new parameters for you but don’t worry I will give you a simple answer for your understanding. Traces or Tracks: A trace is a piece of copper, think of a wire, that makes an electrical connection between 2 or more points on a pcb. Traces carry current between these two points on the printed circuit board. You can see an image where RED and BLUE are tracked. Pads: Pads are small areas of copper in predetermined shapes normally used to make a connection to a component pin. Vias: A via is a physical piece of metal that makes electrical connections between layers on the printed circuit board. Vias can carry signals or power between layers using plated through holes. Using this technology a via is formed by drilling a hole through the layers to be connected and then plating the inner surface of the drilled hole. Vias should be sized according to the traces connecting between layers and ultimately how much power it must carry. I think You got a basic idea about what exactly a PCB is… correct? So let’s move further and discuss, What are the designing tools of PCB? PCB Designing Software 1) Eagle 2) OrCAD 3) Proteus 4) KiCad 5) Altium Designer 6) EasyEDA These are some of the famous EDA software presently available in the market. One can use any one of the above lists as per their convenience of use. These are some of the famous EDA software presently available in the market. One can use any one of the above lists as per their convenience of use.EagleorCadProteusKiCadAltium DesignerEasyEDA Previous Next Application: Medical and Healthcare Industry Illumination and Lighting Industry Consumer Electronics Industry Industrial Equipment Industry Aerospace Industry Automotive Industry Safety and Security Equipment Industry Telecommunications Industry Military and Defense Summary To summarize, in this blog first, we did an introduction of PCB. Then we discussed the basics of Electronics. We introduce the Basic Concepts of PCB like Schematic, PCB layers, etc. We discuss some of the PCB designing software and applications currently used in the market. References 1.http://www.pic-control.com/pcb-design-service/ 2.https://qualityinspection.org/electronics-videos-basics-pcb-pcba-smt-process/ 3.https://kitflix.com/how-to-study-pcb-design-getting-started-with-printed-circuit-boards/ 4.https://usa.pcbpower.com/application-and-use-of-pcbs.html  5.https://www.goldphoenixpcb.com/html/Support_Resource/arc_177.html

Getting started with AVR and Arduino

Home Category Child Category Part I – Untangling the wires: On your journey of exploring the different areas of embedded systems and microcontroller programming, you must’ve come across the term ‘AVR’. This blog (or series of blogs) will try to demystify all the terminologies. Prerequisites Before we proceed, this blog assumes that you already have a basic overview and understanding of what microcontrollers are, what their basic functionalities are, and how they differ from microprocessors. Knowledge of the C/CPP programming language would be beneficial. Table of Contents Introduction Arduino vs AVR The family of AVR microcontrollers Keywords Further reading References Introduction The technical definition of what AVR is, is: The AVR microcontroller is a family of mostly 8-bit microcontrollers developed by Atmel (now Microchip), that follow the Harvard RISC architecture. Let\’s try to break all this technical jargon down. Harvard architecture is a type of architecture where the instructions (program code) and data are stored in different parts of memory. This is in contrast to Von Neumann\’s architecture where no such distinction is made. The following illustration might help you understand the concept a little better. Now coming to the other piece of jargon that might’ve thrown you off RISC. It stands for Reduced Instruction Set-Computer. It is a computer architecture philosophy that generally follows the idea of having smaller and atomic instruction sizes when compared to its counterpart CISC (Complex Instruction Set-Computer), which has relatively bigger instructions. We won\’t be diving into this as this is a topic for another day. Arduino vs AVR Before we move any further let\’s clear one big misconception out of the way. People tend to confuse the terms Arduino and AVR quite often. Although it wouldn\’t be fair to compare these two (it would be like comparing an engine to a car), the following table clearly explains what are the differences between the two. In this article when we use the word “Arduino”, we will be referring to the Arduino platform which includes all the hardware and software made by the company.   Arduino   AVR 1. Is hardware and software platform which includes, but is not limited to: the Arduino IDE, Arduino Uno board, and the Arduino programming language 1. Is a family of microcontrollers developed in 1996 by Atmel. It is only a piece of hardware. 2. The Arduino Uno is a board that is built around the ATMega328, which is an AVR microcontroller. Apart from the microcontroller itself, it has other components such as a USB2.0 cable and a PCB on top of which the components such as resistors and capacitors are wired together. 2. Is a microcontroller that requires additional passive and active components (clock, LEDs, etc.) to be wired up by the end-user for it to work. 3. Products are developed and maintained by Arduino (company) 3. Products are developed and maintained by Microchip Technology Inc 4. An Arduino Uno board:Notice the various components such as voltage regulators, connectors, switches, LEDs that are already soldered onto the board.The rectangular black IC (Integrated Circuit)/chip on the bottom right-hand corner of the board is the engine that drives the car (board), ie, the ATmega328, which is an AVR microcontroller 4. The ATmega328P, an AVR microcontroller: It doesn’t come packaged with any components, which have to be attached by the vendor/programmer themselves Difference Between Arduino and AVR The family of AVR microcontrollers Microchip offers a wide selection of microcontrollers to choose from, each meeting a different set of requirements. They can broadly be divided into three categories. Series Package size FlashSize  Operating Frequency Example ATtiny(TinyAVR) 8-32 pins 0.5kB – 32kB 1.6MHz-32Mhz ATtiny85 ATMega(megaAVR) 28-100 pins 4kB – 256kB 1.6MHz-32Mhz ATMega328 ATxmegaXMEGA 44-100pins 16kB – 256kB 1.6MHz-32Mhz ATXmega128 AVR MCU Family Series Differences The above table isn’t exhaustive as there are many other families of microcontrollers such as the 32-bit AVR32 and the newly released AVR Dx series. The family of microcontrollers you end up choosing, totally depends on the scope of your project. Looking for a very small compact and lower power microcontroller which can automate a basic task, like toggling an LED-based on an input switch? Then go for the ATtiny family. Looking to control a servo motor that is connected to an IR sensor? You definitely won\’t go wrong with the ATmega series. Still, looking for more firepower for controlling multiple sensors? The ATxmega series has got your back. In the upcoming blog, we shall deep dive into one of the most widely loved and used microcontrollers – the humble yet mighty ATmega328. Till next time! Ciao! Further Reading http://ce.sharif.edu/~pourmohammadi/AVR%20Microcontroller%20and%20Embedded%20Systems/AVR%20Microcontroller%20and%20Embedded%20Systems.pdf https://en.wikipedia.org/wiki/AVR_microcontrollers http://www.avrbeginners.net/ References https://www.microchip.com/en-us/product/ATmega328P Intro Video on Device Drivers and Application Code for AVR(Arduino Boards) – YouTube

About ARM Processor’s

first View What is a Processor Processor is programmable electronic circuitry that performs operations according to the instructions stored in memory. The processor as of itself does not have the memory and I/O devices. The processor reads the instructions stored in the memory, interprets it, and stores the output in memory or signals the I/Os. Processor Consists of the Processor core which contains circuitry for instruction fetching, decoding, and execution, register banks, and control units. According to the architecture design of the processor, the different processors have different components. For example, ARM cortex-M4 processors have NVIC, MPU, Floating point units, optional debug subsystems. This allows the microcontroller vendors to design differently. A block diagram of the microcontroller. Fig 1.2 – A microcontroller contains Many different blocks How does Processor control the world? Processors become an integral part of our life. We come across many devices which have processors embedded in them. For example: The smartphone on which I am writing this article has ARM cortex-A55 and cortex-A75 as processor,   The Famous Tesla motors FSD Self-driving computer has many ARM processors. To give the idea of how processors are running the world look at these two examples. Upto 2019, Arm partners have shipped more than 160 billion Arm-based chips. Due to the shortage of semiconductor chips(processors) many car manufacturing companies had to reduce the number of cars manufactured. ARM Processor ARM Processor ARM processors are designed by ARM Ltd., ARM does not manufacture processors or sell the chips directly. Instead ARM licenses these designs to other semiconductor companies so that they can make their processor, microcontroller, SOCs as ARM processors are configurable. In the Cortex processor range, the processors are divided into three profiles: 1) The A Profile is designed to handle complex applications such as high-end embedded OSs. 2) The R profile processors are targeted primarily at the high end of the real-time market. These are applications, such as hard drive controllers, automotive systems, etc. 3) The M profile processors target smaller-scale applications such as microcontrollers and mixed-signal design. ARM CortexA1) The A Profile is designed to handle complex applications such as high-end embedded OSs.Click HereARM Cortex RThe R profile processors are targeted primarily at the high end of the real-time market. These are applications, such as hard drive controllers, automotive systems, etc.Click HereARM Cortex MThe M profile processors target smaller-scale applications such as microcontrollers and mixed-signal design.Click Here Previous Next ARM develops new processors, new instructions, and architectural features are added from time to time, as a result, there are different versions of the architecture. For example: ARM7TDMI is based on the architecture version ARMv4T. ARMv5TE architecture was introduced with the ARM9E processor families. With the ARM11 Processor family, the architecture was extended to ARMv6 with memory system features and SIMD instructions included.  Cortex family processors are based on ARMv7 and ARMv6. The cortex-M3 and cortex-M4 processors are based on ARMv7-M architecture. The architecture evolution of the ARM can be seen in the following (Fig 1.4). All the cortex-M processors support Thumb-2 technology(16-bit and 32-bit instructions), with no need to switch the processor between Thumb state and ARM state. Keil MDK-ARMIAR systems(Embedded workbench for ARM Cortex-M) GCC_based IDEs Previous Next For Programming and debugging ARM Processor based MCU’s, we will be using Microcontrollers of different vendors like: STMicroelectronics and NXP Semiconductors. We will be using STM32 Family of STMicroelectronics and S32 Family of NXP Semiconductors. Both of these are based on ARM Processor and have rich set of features and specifications which are ideal for learning embedded systems. Now both the companies provide their own IDE’s for  : STM32CubeIDE and S32 Design IDE for respective family of MCU mentioned above. Or we can also use the Above-mentioned IDE’s which are general IDE’s can be used to program any ARM processor based MCU. But recomended one is to use Vendor specific IDE as it has many extra featutes for programming. CMSIS The Common Microcontroller Software Interface Standard(CMSIS) was developed by ARM to allow microcontroller and software vendors to use a consistent software infrastructure to develop software solutions for cortex microcontrollers. THE AIM OF CMSIS: Software reusability: make it easier to reuse code with different Cortex-M processors, reducing time to market and verification efforts.  Software compatibility: Due to consistent software infrastructure, software from various sources can work together, reducing the risk in integration.  The CMSIS allows easy access to processor core features from the c language.  CMSIS-compliant device drivers can be used with various compilation tools. CMSIS started out as a way to establish consistency in device-driver for the Cortex-M microcontrollers, and this has become CMSIS-Core. Since then, additional CMSIS projects have started: CMSIS-Core  A set of APIs for applications developers to access the features on the Cortex-M processor regardless of microcontroller devices and toolchain used. CMSIS-DSP library This library is intended to allow software developers to create DSP applications on Cortex-M microcontrollers easily. CMSIS-SVD the System View Description in an XMl-based file format to describe peripheral set in microcontroller products. CMSIS-RTOS  the CMSIS-RTOS is an API specification for embedded OS running on Cortex-M Microcontrollers. CMSIS-DAP the CMSIS-DAP(Debug Access Port) is a reference design for a debug interface adaptor, which supports USB to JTAG/Serial protocol conversions. The CMSIS files are integrated into device-driver library packages from the microcontroller vendor. So when you are using CMSIS-compliant device-driver libraries provided by the microcontroller vendors, you are already using CMSIS. We can define the CMSIS into multiple layers: Core peripheral Peripheral Layer Name definitions,address definitions, and helper functions to access core registers and core peripherals. This is processor specific and is provided by ARM. Device Peripheral Access LAyer:  Name definitions, address definitions of peripheral registers etc. This is device specific. Access Functions For Peripherals Access Functions For Peripherals How do I use CMSIS-Core ? Add Source files to the project. This includes: Device specific, toolchain-specific startup code, in the form of assembly or C. Device-specific device initialization code(e.g. System_c). Add header files into the search path of the project: A device-specific header

Memory System in Microcontrollers

Table of Contents Memory Controller (MCU)  It is a digital circuit that manages the flow of data going to and from the computer main memory. MCU can be a separate chip or integrated into another chip such as being placed on the same die of a microprocessor. In the latter case it is known as an integrated memory controller. Memory controller is also called a Memory Chip Controller(MCC) or Memory Control Unit.(MCU). Now Main memory can be directly or indirectly connected to the CPU via memory bus. Is the only memory that is directly accessible to CPU The CPU continuously reads instructions stored in Main Memory and executes them as required. Types of Main Memory/Primary Storage are: RAM(Random Access Memory) Processor Registers Processor Cache Processor Registers: are located inside the processors and are the fastest accessible memory by CPU of computers data storage. Processor Cache / cache memory: is intermediate stage b/w Processor registers and RAM. Most actively used information in the RAM is stored in the cache memory. Random Access Memory(RAM): is a main memory which is directly accessible by CPU (though it is slowest of the above mentioned Primary Storage). RAM(Random Access Memory) It is volatile memory that loses content on power off. It is the main memory with the largest size and it stores the working data and machine code.  (Machine Code – is instruction that can be executed directly by CPU. Each instruction tells the CPU to perform a task like load, store, jump or ALU operation on the data of Processor Register or Processor Core) So RAM stores the instructions and the data on which instruction has to be done. When the computer is turned on, it loads data to RAM. Programs that are currently running are stored in RAM. Now, there are 2 main types RAM: SRAM  2) DRAM  As the RAM types used for Primary storage are volatile, a computer containing only such storage would not have a source memory to read instructions from, in order to start the computer. Hence the non – volatile primary storage containing a small start-up program(BIOS) is used to bootstrap the computer.The non-volatile technology used for this purpose is ROM(Read Only Memory). ROM( Read Only Memory) It stores the program that is rarely changed during the life of the system and it contains the data for initialising the system and also user application program. → When Powered on CPU has no software in its main memory (as main memory mainly RAM:  that tells the instructions to CPU, is volatile in nature) → ROM stores the initial program that runs when the computer is powered on. → The computer first executes a relatively small program stored in ROM(Read Only Memory) along with a small amount of data, to access the non-volatile devices. In short ROM contains the program that allows a computer to startup each time it is turned on. ROM also performs large Input/Output tasks and perform programs or software instructions.

Intro to Hardware and Software tools : esp8266

Table of Contents Introduction Most of the viewers reading this blog must have known the word NodeMCU or esp8266 WiFi chip. For those who don\’t know just for the introduction, it is a WiFi chip that is connected with the embedded products that give u the feature of wireless communication in your device. Now there are many tutorials and resources (getting started with esp8266, how to make and add WiFi functionality on your project using esp8266 and NodeMCU ) which are just one google search with full source codes and circuitry. The content of this blog is not related to any tutorial. The thing which comes to my mind when I first get to know about esp8266  is What is the working and technology behind a device which connects to our WiFi  ( like WiFi is a wireless communication which is more raw language we can say a bunch of electromagnetic waves which are radio waves or radio frequency in wireless communication). We have wifi-connected devices everywhere around us in laptops, phones, watches, etc. How does a small IC( here talking in reference to esp8266) which is about the size of our finger connect to these electromagnetic waves and also decode them ??? What is the basic classification of these chips ???  What are the hardware and software tools which are needed for them???? and many such things that actually the whole hardware and software is set up for programming these chips and using in our embedded device. So this blog will be all about answers to these questions, as an understanding of these things will get u knowledge that how in actual a controller(like Microcontroller, Soc, etc) is interfaced with the outside world. As esp8266 is open source so there are many resources and tutorials given for it but what if we need to integrate a controller or any wireless chip that is not open source ( like in our laptops, smartwatches, smartphones)  and also there are many WiFi chips other than esp8266 which are used in our embedded products and which are not open source. So to have an understanding of the whole hardware and software environment for an embedded developer is important to concern. As understanding, these things will get u knowledge that how in actual a controller( like Microcontroller, Soc, etc) is interfaced with the outside world. Hardware Development Kit / Hardware Setup Esp8266 is a standalone wifi MCU or Wireless SoC that connects to wireless network internet. It is produced by Espressif Systems in Shanghai, China. After reading this definition of esp8266  i got a question that how MCU connects to our wireless communication ( basically  radio waves ) as in most simple words u can say that MCU is a bunch of transistors which are miniaturized in a single IC and transistor is a  device which is used for switching purpose or  amplification . Now these transistors are miniaturized in a small IC using RF-CMOS technology which integrates our radio frequency with the electronic circuits(which are made up of transistors ). This RF-CMOS technology is the reason behind we today have wireless communication like WiFi, Lora, cellular communication. Now this MCU requires some external circuit like reset circuit, crystal oscillator to make this MCU work ( just like we make a circuit for boot-loading the AVR MCU) and that circuit is what we call as WiFi modules e.g. esp01 -12 series of modules (made by third party manufacturer AI thinker labs) and ES Wroom-02 series of modules made by Espressif Systems. Now, these modules are integrated with an external circuit like a voltage regulator, USB to UART interface controller for connecting the host computer for programming the esp8266 chip. This integration of modules with these circuits is development boards. Most common and popular development boards are NodeMCU, Bolt IOT, Adrafruit huzzah esp8266 breakout, etc. Software Tools and Environment Setup Classification In Embedded systems when programming on a controller, there is a need for toolchains, Software Development Kits(SDK), Integrated Development Board for creating the software environment to upload the programs or firmware into it. Tool-chain – Is a set of all programming tools that are used to perform a complex software task or to create a software environment for a controller in embedded systems. These programming tools can be IDE, Compiler, debugger, etc, Software Development Kit (SDK)- This includes the necessary building blocks for developing applications. This includes the framework, libraries, Header files, Compiler, Debuggers, DLL libraries, and other tools to compile source code into the executable program. One can write Source Code in any text editor and build our program using the tools of SDK. Integrated development environment (IDE)- integrates all these SDK features, including the compiler into the GUI interface which makes it easier for the user to access all these features and easy to develop Software. The main concern here is that when we want to write programs for a controller in embedded systems there are many tool-chains available for them and tool-chain forms our software environment. Now in the tool-chain, our IDE comes which is the software application that contains all the tools and files required for programming the controller like the ARDUINO IDE provides a tool-chain to a number of controllers -AVR, SAM, NRF52  , esp8266 MCU and many others. And our IDE contains the SDK and makes them in GUI interface for user friendly. Also  Some Tool-chain use the command-line interface in which commands are written instead of clicking the icons by going to the path directory of the SDK. To be noted down: Now for esp8266 the most common and popular tool-chain is using the Arduino IDE.  Software Environment for esp8266 Now there are many tool-chains for programming the esp8266, we can program esp8266 in python as well as C,C++ language depending upon the tool-chain we chose. like 1) Using Arduino IDE –  A C++-based firmware. With this core, the ESP8266 CPU and its Wi-Fi components can be programmed like any other Arduino device. The ESP8266 Arduino

Stay Updated With Us

Error: Contact form not found.

      Blog